THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4230 2024-25 Lecture 14 February 26, 2025 (Wednesday)

1 Recall

Yesterday, we discussed the property of subgradient and we left the proof for

$$\partial (f_1 + f_2)(x) = \partial f_1(x) + \partial f_2(x)$$

as an after-class discussion. However, the proof for the " \iff " direction is difficult, so we may skip the general proof here and introduce the following theorem.

Theorem 1. Let f_1, f_2 be convex functions, and

$$\operatorname{ri} \operatorname{dom}(f_1) \cap \operatorname{ri} \operatorname{dom}(f_2) \neq \emptyset$$

Then $\partial(f_1 + f_2)(x) = \partial f_1(x) + \partial f_2(x), \forall x \in \operatorname{dom}(f_1) \cap \operatorname{dom}(f_2).$

Proof for simple case. First, we claim that for convex function $f : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$. Then

$$\partial f(x) = [\partial_{-}f(x), \partial_{+}f(x)]$$

where $\partial_{-}f(x) = \lim_{y \uparrow x} \frac{f(y) - f(x)}{y - x}$ and $\partial_{+}f(x) = \lim_{y \downarrow x} \frac{f(y) - f(x)}{y - x}$. In fact, by convexity of f,

$$y_2 > y_1 > x \implies \frac{f(y_2) - f(x)}{y_2 - x} \ge \frac{f(y_1) - f(x)}{y_1 - x} \ge \partial_+ f(x)$$
$$\implies f(y_2) - f(x) \ge \partial_+ f(x)(y_2 - x), \quad \forall y_2 > x$$

Similarly, we will also have $f(y_2) - f(x) \ge \partial_+ f(x)(y_2 - x)$, $\forall y_2 < x$. Thus, this implies that $\partial_+ f(x) \in \partial f(x)$ and $\partial_+ f(x) + \varepsilon \notin \partial f(x)$, $\forall \varepsilon > 0$. Secondly, we will see

$$\partial(f_1 + f_2)(x) = [\partial_-(f_1 + f_2)(x), \partial_+(f_1 + f_2)] = [\partial_-f_1(x) + \partial_-f_2(x), \partial_+f_1(x) + \partial_+f_2(x)]$$

2 Optimality condition of Convex Functions

Recall: Euler's condition

- 1. If $f \in C^1(\mathbb{R}^n)$, and x^* is a solution to $\min_{x \in \mathbb{R}^n} f(x)$, then $\nabla f(x^*) = 0$.
- 2. If f(x) is convex, and $\nabla f(x^*) = 0$, then x^* is an optimal solution to the problem $\min_{x \in \mathbb{R}^n} f(x)$.

Proposition 2. Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a convex function. Then

$$x \in \operatorname{dom}(f) \text{ be a local minimum of } f.$$

$$\iff x \in \operatorname{dom}(f) \text{ is a global minimum of } f$$

$$\iff 0 \in \partial f(x)$$

Prepared by Max Shung

- *Proof.* 1. If $0 \in \partial f(x)$, then $f(y) \ge f(x) + \langle 0, y x \rangle$, $\forall y \in \mathbb{R}^n$. This implies that x is a global minimizer.
 - 2. If x is global minimum, then it is clear that x is a local minimum.
 - 3. If x is a local minimum of f, then

$$f(x) \le f(z), \quad \forall z \in B_{\varepsilon}(x)$$

Let $y \in \mathbb{R}^n$ be arbitrary, then for $\lambda > 0$ small enough such that $z = x + \lambda(y - x) \in B_{\varepsilon}(x)$. Then, we can deduce that

$$\begin{aligned} f(x) &\leq f\left(x + \lambda(y - x)\right) = f\left((1 - \lambda)x + \lambda y\right) \\ &\leq (1 - \lambda)f(x) + \lambda f(y) \quad (\because f \text{ is convex}) \\ \implies \lambda f(y) &\geq \lambda f(x) + \underbrace{\langle 0, y - x \rangle}_{=0}, \quad \forall y \in \mathbb{R}^n \\ \implies f(y) &\geq f(x) \quad (\because \lambda > 0) \end{aligned}$$

Thus, this implies that $0 \in \partial f(x)$.

Remarks. Let $X \subseteq \mathbb{R}^n$ be a convex set. We define

$$I_X(x) := \begin{cases} 0 & , \ x \in X \\ +\infty & , \ x \notin X \end{cases}$$

is a convex function, and the subdifferential of I_X is

$$\partial I_X(x) = \{ v \in \mathbb{R}^n : \langle v, y - x \rangle \le 0, \ \forall y \in X \}$$

for all $x \in X$. Alternatively, we say

$$v \in \partial I_X(x) \iff I_X(y) \ge I_X(x) + \langle v, y - x \rangle, \ \forall y \in \mathbb{R}^n$$
$$\iff 0 \ge 0 + \langle v, y - x \rangle, \ \forall y \in X$$

Proposition 3. Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function and X = dom(f). Then $x^* \in X$ be a solution to the problem

$$\min_{x \in \mathbb{R}^n} f(x) = \min_{x \in X} f(x).$$

if and only if there exists $v^* \in \partial f(x^*)$ such that $\langle v^*, y - x^* \rangle \ge 0$, $\forall y \in X$. *Remarks.* In the past, we treat X = dom(f) is an optimization under constraint.

Proof. Note that

$$x^* \text{ is a solution to } \min_{x \in X} f(x)$$

$$\iff x^* \text{ is a solution to } \min_{x \in \mathbb{R}^n} f(x) + I_X(x)$$

$$\iff 0 \in \partial (f + I_X) (x^*) \qquad \text{(by the previous proposition)}$$

and $\partial (f + I_X)(x^*) = \partial f(x^*) + \partial I_X(x^*)$ by the property of subgradient. This is equivalent to

$$\iff \exists v \in \mathbb{R}^n \text{ such that } v^* \in \partial f(x^*) \text{ and } -v^* \in \partial I_X(x^*)$$
$$\iff \exists v^* \in \partial f(x^*) \text{ and } \langle -v^*, y - x \rangle \leq 0, \ \forall y \in X$$
$$\iff \exists v^* \in \partial f(x^*) \text{ such that } \langle v^*, y - x \rangle \geq 0, \ \forall y \in X$$

and thus complete the proof.

- End of Lecture 14 -