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1 Recall
Yesterday, we discussed the property of subgradient and we left the proof for

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x)

as an after-class discussion. However, the proof for the “ ⇐⇒ ” direction is difficult, so we may skip
the general proof here and introduce the following theorem.

Theorem 1. Let f1, f2 be convex functions, and

ri dom(f1) ∩ ri dom(f2) ̸= ∅

Then ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x), ∀x ∈ dom(f1) ∩ dom(f2).

Proof for simple case. First, we claim that for convex function f : R → R ∪ {+∞}. Then

∂f(x) = [∂−f(x), ∂+f(x)]

where ∂−f(x) = lim
y↑x

f(y)− f(x)

y − x
and ∂+f(x) = lim

y↓x

f(y)− f(x)

y − x
.

In fact, by convexity of f ,

y2 > y1 > x =⇒ f(y2)− f(x)

y2 − x
≥ f(y1)− f(x)

y1 − x
≥ ∂+f(x)

=⇒ f(y2)− f(x) ≥ ∂+f(x)(y2 − x), ∀y2 > x

Similarly, we will also have f(y2)− f(x) ≥ ∂+f(x)(y2 − x), ∀y2 < x.
Thus, this implies that ∂+f(x) ∈ ∂f(x) and ∂+f(x) + ε ̸∈ ∂f(x), ∀ε > 0.
Secondly, we will see

∂(f1 + f2)(x) = [∂−(f1 + f2)(x), ∂+(f1 + f2)] = [∂−f1(x) + ∂−f2(x), ∂+f1(x) + ∂+f2(x)]

2 Optimality condition of Convex Functions

Recall: Euler’s condition
1. If f ∈ C1(Rn), and x∗ is a solution to min

x∈Rn
f(x), then ∇f(x∗) = 0.

2. If f(x) is convex, and ∇f(x∗) = 0, then x∗ is an optimal solution to the problem min
x∈Rn

f(x).

Proposition 2. Let f : Rn → R ∪ {∞} be a convex function. Then

x ∈ dom(f) be a local minimum of f .
⇐⇒ x ∈ dom(f) is a global minimum of f
⇐⇒ 0 ∈ ∂f(x)
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Proof. 1. If 0 ∈ ∂f(x), then f(y) ≥ f(x) + ⟨0, y − x⟩ , ∀y ∈ Rn.
This implies that x is a global minimizer.

2. If x is global minimum, then it is clear that x is a local minimum.

3. If x is a local minimum of f , then

f(x) ≤ f(z), ∀z ∈ Bε(x)

Let y ∈ Rn be arbitrary, then for λ > 0 small enough such that z = x+ λ(y − x) ∈ Bε(x).
Then, we can deduce that

f(x) ≤ f (x+ λ(y − x)) = f ((1− λ)x+ λy)

≤ (1− λ)f(x) + λf(y) (∵ f is convex)
=⇒ λf(y) ≥ λf(x) + ⟨0, y − x⟩︸ ︷︷ ︸

=0

, ∀y ∈ Rn

=⇒ f(y) ≥ f(x) (∵ λ > 0)

Thus, this implies that 0 ∈ ∂f(x).

Remarks. Let X ⊆ Rn be a convex set. We define

IX(x) :=

{
0 , x ∈ X

+∞ , x ̸∈ X

is a convex function, and the subdifferential of IX is

∂IX(x) = {v ∈ Rn : ⟨v, y − x⟩ ≤ 0, ∀y ∈ X}

for all x ∈ X . Alternatively, we say

v ∈ ∂IX(x) ⇐⇒ IX(y) ≥ IX(x) + ⟨v, y − x⟩ , ∀y ∈ Rn

⇐⇒ 0 ≥ 0 + ⟨v, y − x⟩ , ∀y ∈ X

Proposition 3. Let f : Rn → R ∪ {+∞} be a convex function and X = dom(f). Then x∗ ∈ X be a
solution to the problem

min
x∈Rn

f(x) = min
x∈X

f(x).

if and only if there exists v∗ ∈ ∂f(x∗) such that ⟨v∗, y − x∗⟩ ≥ 0, ∀y ∈ X .

Remarks. In the past, we treat X = dom(f) is an optimization under constraint.

Proof. Note that

x∗ is a solution to min
x∈X

f(x)

⇐⇒ x∗ is a solution to min
x∈Rn

f(x) + IX(x)

⇐⇒ 0 ∈ ∂ (f + IX) (x
∗) (by the previous proposition)

and ∂(f + IX)(x
∗) = ∂f(x∗) + ∂IX(x

∗) by the property of subgradient.
This is equivalent to

⇐⇒ ∃v ∈ Rn such that v∗ ∈ ∂f(x∗) and −v∗ ∈ ∂IX(x
∗)

⇐⇒ ∃v∗ ∈ ∂f(x∗) and ⟨−v∗, y − x⟩ ≤ 0, ∀y ∈ X

⇐⇒ ∃v∗ ∈ ∂f(x∗) such that ⟨v∗, y − x⟩ ≥ 0, ∀y ∈ X

and thus complete the proof.

— End of Lecture 14 —
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